Metro ESP32-S2 board.TX and board.RX default pins
Moderators: adafruit_support_bill, adafruit

Please be positive and constructive with your questions and comments.

Metro ESP32-S2 board.TX and board.RX default pins

by muttstang on Wed Aug 04, 2021 11:53 am

So I'm trying to communicate with my ultimate gps logger shield using the Metro ESP32-S2 and the serial comms is just on the "Waiting for fix..." message. I was wondering what the default board.TX and board.RX pins are on this board and if those are incorrect, would I even get to this "Waiting for fix..." message in the serial window portion on Mu. Not sure if I just need to bring this thing outside or if I need to put something else for the inputs in the line below.

Code: Select all | TOGGLE FULL SIZE
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

I'm using the code from the ultimate GPS board.

Code: Select all | TOGGLE FULL SIZE
# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
# SPDX-License-Identifier: MIT

# Simple GPS module demonstration.
# Will wait for a fix and print a message every second with the current location
# and other details.
import time
import board
import busio

import adafruit_gps

# Create a serial connection for the GPS connection using default speed and
# a slightly higher timeout (GPS modules typically update once a second).
# These are the defaults you should use for the GPS FeatherWing.
# For other boards set RX = GPS module TX, and TX = GPS module RX pins.
uart = busio.UART(board.TX, board.RX, baudrate=9600, timeout=10)

# for a computer, use the pyserial library for uart access
# import serial
# uart = serial.Serial("/dev/ttyUSB0", baudrate=9600, timeout=10)

# If using I2C, we'll create an I2C interface to talk to using default pins
# i2c = board.I2C()

# Create a GPS module instance.
gps = adafruit_gps.GPS(uart, debug=False)  # Use UART/pyserial
# gps = adafruit_gps.GPS_GtopI2C(i2c, debug=False)  # Use I2C interface

# Initialize the GPS module by changing what data it sends and at what rate.
# These are NMEA extensions for PMTK_314_SET_NMEA_OUTPUT and
# PMTK_220_SET_NMEA_UPDATERATE but you can send anything from here to adjust
# the GPS module behavior:
#   https://cdn-shop.adafruit.com/datasheets/PMTK_A11.pdf

# Turn on the basic GGA and RMC info (what you typically want)
# Turn on just minimum info (RMC only, location):
# gps.send_command(b'PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
# Turn off everything:
# gps.send_command(b'PMTK314,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0')
# Turn on everything (not all of it is parsed!)
# gps.send_command(b'PMTK314,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0')

# Set update rate to once a second (1hz) which is what you typically want.
# Or decrease to once every two seconds by doubling the millisecond value.
# Be sure to also increase your UART timeout above!
# gps.send_command(b'PMTK220,2000')
# You can also speed up the rate, but don't go too fast or else you can lose
# data during parsing.  This would be twice a second (2hz, 500ms delay):
# gps.send_command(b'PMTK220,500')

# Main loop runs forever printing the location, etc. every second.
last_print = time.monotonic()
while True:
    # Make sure to call gps.update() every loop iteration and at least twice
    # as fast as data comes from the GPS unit (usually every second).
    # This returns a bool that's true if it parsed new data (you can ignore it
    # though if you don't care and instead look at the has_fix property).
    # Every second print out current location details if there's a fix.
    current = time.monotonic()
    if current - last_print >= 1.0:
        last_print = current
        if not gps.has_fix:
            # Try again if we don't have a fix yet.
            print("Waiting for fix...")
        # We have a fix! (gps.has_fix is true)
        # Print out details about the fix like location, date, etc.
        print("=" * 40)  # Print a separator line.
            "Fix timestamp: {}/{}/{} {:02}:{:02}:{:02}".format(
                gps.timestamp_utc.tm_mon,  # Grab parts of the time from the
                gps.timestamp_utc.tm_mday,  # struct_time object that holds
                gps.timestamp_utc.tm_year,  # the fix time.  Note you might
                gps.timestamp_utc.tm_hour,  # not get all data like year, day,
                gps.timestamp_utc.tm_min,  # month!
        print("Latitude: {0:.6f} degrees".format(gps.latitude))
        print("Longitude: {0:.6f} degrees".format(gps.longitude))
        print("Fix quality: {}".format(gps.fix_quality))
        # Some attributes beyond latitude, longitude and timestamp are optional
        # and might not be present.  Check if they're None before trying to use!
        if gps.satellites is not None:
            print("# satellites: {}".format(gps.satellites))
        if gps.altitude_m is not None:
            print("Altitude: {} meters".format(gps.altitude_m))
        if gps.speed_knots is not None:
            print("Speed: {} knots".format(gps.speed_knots))
        if gps.track_angle_deg is not None:
            print("Track angle: {} degrees".format(gps.track_angle_deg))
        if gps.horizontal_dilution is not None:
            print("Horizontal dilution: {}".format(gps.horizontal_dilution))
        if gps.height_geoid is not None:
            print("Height geo ID: {} meters".format(gps.height_geoid))

Posts: 32
Joined: Mon May 10, 2021 3:24 pm

Re: Metro ESP32-S2 board.TX and board.RX default pins

by muttstang on Wed Aug 04, 2021 12:53 pm

Yep, it was a silly question. I figured out how to put the pins properly into the command. board.IO12 and board.IO13 got it working..

Posts: 32
Joined: Mon May 10, 2021 3:24 pm

Please be positive and constructive with your questions and comments.